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Salt marshes are globally important C pools
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Figure 5. Mean long-term rates of C sequestration (¢ C m™ yr™') in soils in
terrestrial forests and sediments in vegetated coastal ecosystems. Error bars indicate
maximum rates of accumulation. Note the logarithmic scale of the y axis. Data

sources are included in Tables 1 and 2.
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What role do nutrients play blue carbon
pools and processes?

Global change in dissolved-inorganic-nutrient
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TIDE - a long-term NITRATE enrichment experiment

Plum Island Ecosystem LTER site
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Fracturing was associated with changes in
biomass allocation & ecosystem processes
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What is the role of Ecosystem Processes

Soil Building, Carbon Sequestration, Decomposition

genetlc d Ive rSIty In & Greenhouse Gas Emissions

ecosystem science? ‘
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ECOLOGISTS USED TO THINK THAT EVOLUTION WAS T0O SLOW TO
AFFECT THEIR STUDIES. THEY WERE WRONG.




Spartina genetic diversity decreased with
N enrichment in as little as 3 years
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Changes in flowering phenology (& BNPP) are
genetically inherited
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Research Question:

How does chronic nitrogen




Multi-disciplinary approach

Greenhouse
Gas Fluxes

Microbial
community




Monthly measurement of GHG fluxes using static
chambers in 2015 & 2016
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NEE = GPP +R__,
GPP = CO, uptake by plants.

R.co = CO, released by ecosystem
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2015 — GHG in one permanent location

2016 — GHG fluxes in new location each time

West Creek : Sweeney Creek
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Nitrogen has no effect on NEE
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Nitrogen increases R,
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N has no effect on CH, emissions
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Estimated annual C storage in low marsh
VERY preliminary — N may lead to net heterotrophy
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Tea Bag Index to estimate k and S

e Gives estimates of OM decomposition rate (k)

Methods in and OM stabilization rate (S)

Ecology and Evolution

e e * Deployed tea bags in High and Low
| marsh at both sites as part of global

study (Mueller et al. 2017)

Deployed another array in 2016 —
P?,rt of ILTER Global
‘TeaComposition (Djukic et al. 2018)

Deployed anether array in 2017 as "
part o CampestlonH O in both
the high anJiéVw’margM




N decreases SOM stabilization
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Blue Carbon Inventory
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N decreases soil C pools
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Conceptual model on the effects on N
on blue carbon pools & processes

Chronically N Enriched Salt Marsh



ANPP

BNPP Ry

SOM Soil C
stock

Reference Salt Marsh Chronically N Enriched Salt Marsh

 Can land management practices limiting N-enrichment
restore genetic diversity and ecosystem C sequestration?

e What is the role of rapid evolutionary processes in
ecosystem science?
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Questions?
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